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In the present paper, based upon the reasonable assumption that the particle displacement Ar(¢) has a
Gaussian distribution, anomalous diffusion in the Kuramoto-Sivashinsky equation is analyzed. There is
good agreement between the predictions of this paper and the simulation results of Bohr and Pikovsky

[Phys. Rev. Lett. 70, 2892 (1993)].
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Motion of advected particles in turbulent fluids is of
both fundamental and practical importance. Because of
the complexity of three-dimensional turbulence, it is use-
ful to investigate a simpler model system that manifests
some properties of the actual turbulence. A particular
example is the Kuramoto-Sivashinsky (KS) equation

a—u-i-uVu=—V2u—V4u s (1)
ot
which has been derived in a variety of contexts from
chemical turbulence to flame-front propagation. Investi-
gating diffusion in the KS equation is helpful for under-
standing diffusion in turbulent flows. The motion of a
single marked particle satisfies

dr(t)
dt

in which u (x,?) is a velocity field and r(¢) is the trajecto-
ry of the marked particle immersed in the fluid. Bohr
and Pikovsky [1] have recently studied Egs. (1) and (2) us-
ing numerical and analytical techniques. Their numerical
simulations show that particle displacement Ar(z)~t"
where %+ <7 <2, and the best fit gives 7=1.38. In order
to reveal the results of the numerical simulations, they
used the mean field approximation to analyze anomalous
diffusion in the KS equation.

It is well known that the large-scale properties of the
one-dimensional Kuramoto-Sivashinsky equation can be
described by the Burgers equation with white noise [2-5]

=u(r(t),t), (2)
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where the white noise 7(x,) is specified by the two-point
correlation

(n(x,tm(x",t")) =—TV(x —x')8(¢t —t') . @)

+uVu=vV2u +9(x,t) , (3)

For short times and small systems, the statistical proper-
ties of (3) can be described by the linear version [1,6]

du _ 2
ar vWou +n(x,t) . (5)
The two-point correlation function for Eq. (5) is
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and the two-point correlation function for Eq. (3) is [7]

(ulx +rt+7)u(xt)) —>s

1063-651X/94/49(6)/5853(2)/$06.00 49

(ulx +r,t+r)u(x,t))—>f"/’HlLT—] , (7)
where
glim H(&)=0, ;ir%H(§)=const . (8)

Using the above relations, Bohr and Pikovsky analyzed
anomalous diffusion in Egs. (5) and (3) by mean field ap-
proximation. The diffusion in Eq. (5) is anomalous with
exponent 7=3 up to the crossover time t;, and then
tends to the behavior {[Ar(t)]*) ~t Int. The diffusion in
Eq. (3) is anomalous with exponent n=$. However, the
validity of the mean field approximation is not clear. In
this paper, based upon a reasonable assumption, the
problems of anomalous diffusion in the Kuramoto-
Sivashinsky equation are studied.

Batchelor [8] has pointed out that the trajectory r(t) of
a single marked particle immersed in a turbulent fluid has
a Gaussian distribution for long diffusion times. Also,
many experimental data show that it is valid for all
diffusion times [9]. Thus, in this paper, we can assume
that the particle displacement Ar(t) has the Gaussian dis-
tribution

- 1 Ar(2)]?
PlAr(t)|=—— — , 9
AL Y ) 2o (0] ] ®
in which

a()={([Ar(0)]})}"2.

The diffusion can be expressed by the two-point correla-
tion function [10]

([ArOY ——21 [ Culr(r),1)u(r(0),0))dr . (10)

First, we analyze the diffusion in the linear Eq. (5).
From (6) and (9), we have
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Substituting (11) into (10) yields

I't t 1
ol=—= ———dr. (12)
Vmy fo Vial+2ovr
From (12), we obtain
L Ay L (13)
dt | t V2mv Vol+ove

In the limit t—>o, it is easy to find o?

=([Ar(£)]*) ~t*>. The diffusion in the linear Eq. (5) is
anomalous with the exponent n=4%. By the mean field
approximation, Bohr and Pikovsky have predicted that
the diffusion in the linear Eq. (5) is anomalous with the
exponent 7=23, up to the time t,=16mv*/T"%, and then
tends to the behavior a2~ Int. Thus the linear equation
result in this paper is different from that of Bohr and Pi-
kovsky by the mean field approximation.
Similarly, for the nonlinear Eq. (3), we obtain

d

d |o?
dt

| =27 H,

) (14)
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in which
0.2 1 + o O’Z 2
H _ = —_— — pZ —_
1 t] mf_mHltr exp dr .
(15)
Utilizing Eqgs. (8), (14), and (15), for z=3, we have

o?=([Ar(t)]*) ~t*3. This result is the same as that
reached by Bohr and Pikovsky using the mean field ap-
proximation. The numerical simulations of Bohr and Pi-
kovsky show the high moments {[Ar(¢)]#)~t™ up to
p =8, and there is no sign of multifractality. If the as-
sumption Ar(t) has the Gaussian distribution, it is easy to
obtain ([Ar(z)]?#)~t".

In conclusion, we use an alternative technique to study
anomalous diffusion in the KS equations. We found that
the diffusion in either the linear equation or the nonlinear
equation is anomalous with exponent n=3%. There is
good agreement between the prediction of this paper for
the nonlinear case and the numerical simulations of Bohr
and Pikovsky [1].
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